结合PCA降维的DBSCAN聚类方法(附Python代码)

news/2024/5/20 7:28:37 标签: 聚类, python, 机器学习, 人工智能, 降维

目录

前言介绍:

1、PCA降维

(1)概念解释:

(2)实现步骤:

(3)优劣相关: 

2、DBSCAN聚类

(1)概念解释:

(2)算法原理:

(3)优劣相关:

代码实现:

0、数据准备:

1、PCA降维

2、DBSCAN聚类

3、代码汇总:

实现效果:

1、降维效果:

2、聚类效果:

写在最后:


前言介绍:

1、PCA降维

(1)概念解释:

PCA,全称Principal Component Analysis,即主成分分析。是一种降维方法,实现途径是提取特征的主要成分,从而在保留主要特征的情况下,将高维数据压缩到低维空间。

在经过PCA处理后得到的低维数据,其实是原本的高维特征数据在某一低维平面上的投影只要维度较低,都可以视为平面,例如三维相对于四维空间也可以视为一个平面)。虽然降维的数据能够反映原本高维数据的大部分信息,但并不能反映原本高维空间的全部信息,因此要根据实际情况,加以鉴别使用

        (2)实现步骤:

        PCA主要通过6个步骤加以实现:

        1、标准化(将原始数据进行标准化,一般是去均值,如果特征在不同量级上,还要将矩阵除以标准差)

        具体:

        其中,E为原始矩阵,Emean为均值矩阵,Enorm为标准化矩阵。

        2、协方差(计算标准化数据集的协方差矩阵)

        具体:

        其中,Cov为协方差矩阵,m为样本的数量,Enorm为均值矩阵。

        3、特征值(计算协方差矩阵的特征值和特征向量)

        具体:

        假设实数λ、n行(原始矩阵E的列数即为n)1列的矩阵X(即n维向量)满足下式:

        则λ为Cov的特征值,其中Cov为协方差矩阵。

        4、K 特征(保留特征值最大的前K个特征(K是降维后,我们期望达到的维度))

        具体:

        若有多个特征值,则保留前K个最大的特征值,以满足之后的计算需求。

        5、K 向量(找到这K个特征值对应的特征向量)

        具体:

        通过步骤3中的公式得到每个特征值对应的特征向量。

        6、降维(将标准化数据集乘以该K个特征向量,得到降维后的结果)

        具体:

        

        其中,Epca为最后要求得的PCA降维矩阵,Enorm为标准化矩阵,X1、X2、X3、...、Xk为对K个特征值对应的特征向量。

        (3)优劣相关: 

        优点:   

        1.PCA降维之后的各个主成分之间相互正交,可消除原始数据之间相互影响的因素

        2.PCA降维的计算过程并不复杂,因实现起来较简单容易

        3.在保留大部分主要信息的前提下,起到了降维简便化计算效果。

        缺点

        1.特征主成分的定义具有模糊性解释性差

        2.PCA降维选取令原数据在新坐标轴上方差最大的主成分的标准,使得一些方差小的特征较易丢失,有损失重要信息的可能性

2、DBSCAN聚类

        (1)概念解释:

        密度聚类亦称“基于密度的聚类”(Density-Based Clustering),此类算法假设聚类结构能通过样本分布的紧密程度确定。通常情形下,密度聚类算法从样本密度的角度来考察样本之间的可连续性,并基于可连接样本不断扩展聚类以获得最终的聚类结果。

        DBSCAN(Density-Based Spatial Clustering of Applications with Noise)就是这样一种聚类算法,该算法基于一组“领域”(neighborhood)参数(ε,MinPts)来刻画样本分布的紧密程度

        (2)算法原理:

        给定数据集D={x1,x2,...,xm},定义下面这几个概念:

 

         理解了相关概念之后,下面给出算法实现的伪代码

 

        (3)优劣相关:

              优点:

              1、能够识别任意形状的样本。

              2、该算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇。

              3、无需指定簇个数,而是由算法自主发现。

              缺点:

              1、需要指定最少点个数(MinPts)与半径(ε)。(但其实相对其他聚类算法来说,已经具有较大的自由性。)

              2、最少点个数与半径对算法的影响较大,一般需多次调试。

代码实现:

0、数据准备:

              在这里,我们使用sklearn库的鸢尾花iris数据集(sklearn.datasets.load_iris)作为测试数据样本。iris数据集包含150个样本,每个样本包含四个属性特征(花萼长度、花萼宽度、花瓣长度、花瓣宽度)和一个类别标签(分别用0、1、2表示山鸢尾、变色鸢尾和维吉尼亚鸢尾)。

              首先,我们要安装sklearn库。安装此库,还是通过pip install命令,但是并不是pip install sklearn,而是pip install scikit-learn。正如我们调用opencv是import cv2,而安装却是通过pip install opencv一样。 

python">pip install scikit-learn

              然后,获取数据集,其中x为鸢尾花的特征数据集(数据类型为数组numpy.adarray),y为鸢尾花的标签数据集(数据类型为数组numpy.adarray) 。

python">from sklearn.datasets import load_iris
x = load_iris().data
y = load_iris().target

1、PCA降维

python">import numpy as np

def PCA_DimRed(dataMat,topNfeat): #PCA_DimRed--PCA dimension reduction,PCA降维
    meanVals = np.mean(dataMat, axis=0)
    meanRemoved = dataMat - meanVals  # 标准化(去均值)
    covMat = np.cov(meanRemoved, rowvar=False)
    eigVals, eigVets = np.linalg.eig(np.mat(covMat))  # 计算矩阵的特征值和特征向量
    eigValInd = np.argsort(eigVals)  # 将特征值从小到大排序,返回的是特征值对应的数组里的下标
    eigValInd = eigValInd[:-(topNfeat + 1):-1]  # 保留最大的前K个特征值
    redEigVects = eigVets[:, eigValInd]  # 对应的特征向量
    lowDDatMat = meanRemoved * redEigVects  # 将数据转换到低维新空间
    # reconMat = (lowDDatMat * redEigVects.T) + meanVals  # 还原原始数据
    return lowDDatMat

2、DBSCAN聚类

python">import numpy as np
import random
import copy

def DBSCAN_cluster(mat,eps,min_Pts): #进行DBSCAN聚类,优点在于不用指定簇数量,而且适用于多种形状类型的簇
    k = -1
    neighbor_list = []  # 用来保存每个数据的邻域
    omega_list = []  # 核心对象集合
    gama = set([x for x in range(len(mat))])  # 初始时将所有点标记为未访问
    cluster = [-1 for _ in range(len(mat))]  # 聚类
    for i in range(len(mat)):
        neighbor_list.append(find_neighbor(mat, i, eps))
        if len(neighbor_list[-1]) >= min_Pts:
            omega_list.append(i)  # 将样本加入核心对象集合
    omega_list = set(omega_list)  # 转化为集合便于操作
    while len(omega_list) > 0:
        gama_old = copy.deepcopy(gama)
        j = random.choice(list(omega_list))  # 随机选取一个核心对象
        k = k + 1
        Q = list()
        Q.append(j)
        gama.remove(j)
        while len(Q) > 0:
            q = Q[0]
            Q.remove(q)
            if len(neighbor_list[q]) >= min_Pts:
                delta = neighbor_list[q] & gama
                deltalist = list(delta)
                for i in range(len(delta)):
                    Q.append(deltalist[i])
                    gama = gama - delta
        Ck = gama_old - gama
        Cklist = list(Ck)
        for i in range(len(Ck)):
            cluster[Cklist[i]] = k
        omega_list = omega_list - Ck
    return cluster

3、代码汇总:

python">from sklearn.datasets import load_iris
import numpy as np
import random
import copy
import matplotlib.pyplot as plt

def PCA_DimRed(dataMat,topNfeat): #PCA_DimRed--PCA dimension reduction,PCA降维
    meanVals = np.mean(dataMat, axis=0)
    meanRemoved = dataMat - meanVals  # 标准化(去均值)
    covMat = np.cov(meanRemoved, rowvar=False)
    eigVals, eigVets = np.linalg.eig(np.mat(covMat))  # 计算矩阵的特征值和特征向量
    eigValInd = np.argsort(eigVals)  # 将特征值从小到大排序,返回的是特征值对应的数组里的下标
    eigValInd = eigValInd[:-(topNfeat + 1):-1]  # 保留最大的前K个特征值
    redEigVects = eigVets[:, eigValInd]  # 对应的特征向量
    lowDDatMat = meanRemoved * redEigVects  # 将数据转换到低维新空间
    # reconMat = (lowDDatMat * redEigVects.T) + meanVals  # 还原原始数据
    return lowDDatMat

def find_neighbor(data,pos,eps): #寻找相邻点函数
    N = list()
    temp = np.sum((data-data[pos])**2, axis=1)**0.5
    N = np.argwhere(temp <= eps).flatten().tolist()
    return set(N)

def DBSCAN_cluster(data,eps,min_Pts): #进行DBSCAN聚类,优点在于不用指定簇数量,而且适用于多种形状类型的簇,如果使用K均值聚类的话,对于这次实验的数据(条状簇)无法得到较好的分类结果
    k = -1
    neighbor_list = []  # 用来保存每个数据的邻域
    omega_list = []  # 核心对象集合
    gama = set([x for x in range(len(data))])  # 初始时将所有点标记为未访问
    cluster = [-1 for _ in range(len(data))]  # 聚类
    for i in range(len(data)):
        neighbor_list.append(find_neighbor(data, i, eps))
        if len(neighbor_list[-1]) >= min_Pts:
            omega_list.append(i)  # 将样本加入核心对象集合
    omega_list = set(omega_list)  # 转化为集合便于操作
    while len(omega_list) > 0:
        gama_old = copy.deepcopy(gama)
        j = random.choice(list(omega_list))  # 随机选取一个核心对象
        k = k + 1
        Q = list()
        Q.append(j)
        gama.remove(j)
        while len(Q) > 0:
            q = Q[0]
            Q.remove(q)
            if len(neighbor_list[q]) >= min_Pts:
                delta = neighbor_list[q] & gama
                deltalist = list(delta)
                for i in range(len(delta)):
                    Q.append(deltalist[i])
                    gama = gama - delta
        Ck = gama_old - gama
        Cklist = list(Ck)
        for i in range(len(Ck)):
            cluster[Cklist[i]] = k
        omega_list = omega_list - Ck
    return cluster

if __name__ == "__main__":
    #1、准备数据
    x = load_iris().data
    y = load_iris().target

    #2、PCA降维
    pro_data = PCA_DimRed(x,2)

    #3、DBSCAN聚类(此步中要保证数据集类型为数组,以配合find_neighbor函数)
    pro_array = np.array(pro_data)
    thecluster = DBSCAN_cluster(pro_array,eps=0.8,min_Pts=30)

    #4、展示降维效果:
    print("下面是降维之前的鸢尾花数据集特征集:")
    print(x)
    print("下面是降维之后的鸢尾花数据集特征集:")
    print(pro_data)

    #5、展示聚类效果:
    plt.figure()
    plt.scatter(pro_array[:, 0], pro_array[:, 1], c=thecluster)
    plt.show()

实现效果:

1、降维效果:

降维之前的鸢尾花数据集特征集:

 

降维之后的鸢尾花数据集特征集:

 

2、聚类效果:

可以看出来,DBSCAN聚类方法并不能很准确地根据PCA降维后的鸢尾花特征集对鸢尾花样本进行聚类,原因是变色鸢尾与维吉尼亚鸢尾的样本特征较近,两者更类似于同属于一个密度空间,因而导致了该实验的不准确性。

但是,其实也可以看出,山鸢尾与其他两种鸢尾能够进行较好的区别 ,说明该方法仍适用于不同类别样本间差距较大的聚类情形

写在最后:

本篇文章主要介绍了PCA降维、DBSCAN聚类这两个机器学习操作的基本原理,以及两者结合的用于实际数据处理的方法

可能基于PCA降维的DBSCAN聚类的方法不是很适用于sklearn库中的鸢尾花数据集,但是该方法既具有处理高维数据的能力,也能够处理各种形状的簇,说明其作为一套较为完整聚类方法,仍然具有较为广阔的应用场景

希望大家能够积极应用这个方法,使得其拥有更多的应用可能性。谢谢各位!

参考书籍:

周志华.机器学习[M].北京:清华大学出版社,2016.01

参考文章:

六种常见聚类算法:http://t.csdn.cn/Urhn9

Python PCA(主成分分析法)降维的两种实现:http://t.csdn.cn/NlAeU

DBSCAN聚类算法Python实现:http://t.csdn.cn/lkFhF

PCA降维原理 操作步骤与优缺点:http://t.csdn.cn/QiEJM

 

 好了以上就是所有的内容,希望大家多多关注,点赞,收藏,这对我有很大的帮助。谢谢大家了!

好了,这里是Kamen Black 君。祝国康家安,大家下次再见喽!!!溜溜球~~ 


http://www.niftyadmin.cn/n/227780.html

相关文章

JAVA使用数组存储输入的成绩并对成绩分段打分------JAVA入门基础教程

System.out.println("请输入成绩有几个"); int sc in.nextInt(); int[] scores new int[sc]; //输入成绩 for(int i 0;i < scores.length;i) {System.out.println("请输入成绩");scores[i] in.nextInt(); } //获取最大值 int bg scores[0]; for(in…

MongoDB 聚合管道中使用数组表达式运算符断言数组($isArray)

数组表达式运算符主要用于文档中数组的操作&#xff0c;接上一篇&#xff1a; MongoDB 聚合管道中使用数组表达式运算符&#xff08;$concatArrays合并数组&#xff09;https://blog.csdn.net/m1729339749/article/details/130162048本篇我们主要介绍数组表达式运算符中用于断…

学会Git

Git是目前世界上最先进的分布式版本控制系统 Git基本理论 1. Git的工作区域 Git本地有三个工作区域&#xff1a;工作目录&#xff08;Working Directory&#xff09;、暂存区(Stage/Index)、资源库(Repository或Git Directory)。加上远程的git仓库(Remote Directory)就可以分…

JAVA数据结构之顺序表、单向链表及双向链表的设计和API实现

一、顺序表 顺序表在内存中是数组的形式存储 类名SequenceList构造方法SequenceList(int capacity)&#xff1a;创建容量为capacity的SequenceList对象成员方法1. public void clear()&#xff1a;空置线性表 2. public boolean isEmpty()&#xff1a;判断线性表是否为空&…

基于GPT-4免费生成代码的工具!小游戏,管理系统都能生成!

Cursor支持Python、Java、C、JavaScript、C#等等&#xff0c;可AI生成代码&#xff0c;功能非常强大&#xff01;这篇教程将教你如何下载安装&#xff0c;带你玩转Cursor 目录 话不多说&#xff0c;先看能力&#xff1a; 只需要三步&#xff0c;就可以AI出你想要的代码&#x…

【2023 · CANN训练营第一季】昇腾AI入门课(Pytorch)——第一章学习笔记

第一章 昇腾AI基础知识介绍 第2节 昇腾AI全栈架构 昇腾 AI 全栈可以分成四个大部分&#xff1a; 1&#xff0e;应用使能层面&#xff0c;此层面通常包含用于部署模型的软硬件&#xff0c;例如 API 、 SDK 、部署平台&#xff0c;模型库等等。 2. AI 框架层面&#xff0c;此层…

TensorFlow 深度学习实战指南:1~5 全

原文&#xff1a;Hands-on Deep Learning with TensorFlow 协议&#xff1a;CC BY-NC-SA 4.0 译者&#xff1a;飞龙 本文来自【ApacheCN 深度学习 译文集】&#xff0c;采用译后编辑&#xff08;MTPE&#xff09;流程来尽可能提升效率。 不要担心自己的形象&#xff0c;只关心如…

『pyqt5 从0基础开始项目实战』10.日志记录 鼠标右键打开(保姆级图文)

目录导包和框架代码实现右键功能实现日志展示弹窗编写一个日志文件用于测试日志展示完整代码main.pythreads.pydialog.py总结欢迎关注 『pyqt5 从0基础开始项目实战』 专栏&#xff0c;持续更新中 欢迎关注 『pyqt5 从0基础开始项目实战』 专栏&#xff0c;持续更新中 导包和框…