机器学习——聚类算法一

news/2024/5/20 8:34:09 标签: 机器学习, 算法, 聚类

机器学习——聚类算法

文章目录

  • 前言
  • 一、基于numpy实现聚类
  • 二、K-Means聚类
    • 2.1. 原理
    • 2.2. 代码实现
    • 2.3. 局限性
  • 三、层次聚类
    • 3.1. 原理
    • 3.2. 代码实现
  • 四、DBSCAN算法
    • 4.1. 原理
    • 4.2. 代码实现
  • 五、区别与相同点
    • 1. 区别:
    • 2. 相同点:
  • 总结


前言

机器学习中,有多种聚类算法可以用于将数据集中的样本按照相似性进行分组。本文将介绍一些常见的聚类算法

  1. K-Means聚类
  2. 层次聚类
  3. DBSCAN算法

在这里插入图片描述

一、基于numpy实现聚类

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from numpy.linalg import norm
import random
np.random.seed(42)
data = np.random.randn(100,2)  #生成一个包含100个样本点的随机数据集,每个样本有2个特征
df = pd.DataFrame(data= data,columns=["x1","x2"])

x1_min, x1_max, x2_min, x2_max = df.x1.min(), df.x1.max() ,df.x2.min(), df.x2.max()

# 初始化两个质心
centroid_1 = np.array([random.uniform(x1_min, x1_max), random.uniform(x2_min, x2_max)])
centroid_2 = np.array([random.uniform(x1_min, x1_max), random.uniform(x2_min, x2_max)])

data = df.values
#设置迭代次数为10
for i in range(10):
    clusters = []
    for point in data:
        centroid_1_dist = norm(centroid_1- point) #计算两点之间的距离
        centroid_2_dist = norm(centroid_2- point)
        cluster = 1
        if centroid_1_dist > centroid_2_dist:
            cluster = 2
        clusters.append(cluster)
    df["cluster"] = clusters

#更换质心(即迭代聚类点)
centroid_1 = [round(df[df.cluster == 1].x1.mean(),3), round(df[df.cluster == 1].x2.mean(),3)]
centroid_2 = [round(df[df.cluster == 2].x1.mean(),3), round(df[df.cluster == 2].x2.mean(),3)]

plt.scatter(x1, x2, c=df["cluster"])
plt.scatter(centroid_1,centroid_2, marker='x', color='red')
plt.show()


在这里插入图片描述

二、K-Means聚类

2.1. 原理

K-means 是一种迭代算法,它将数据集按照距离划分为 K 个簇(其中K是用户预先指定的簇的数量),每个簇代表一个聚类聚类后同一类数据尽可能聚集到一起,不同类数据分离)。实现步骤如下:

  1. 随机初始化K个质心,每个质心代表一个簇
  2. 将每个样本点分配到距离其最近的质心所代表的簇。(如此就形成了K个簇)
  3. 更新每个簇的质心,(即计算每个簇中样本点的平均值)
  4. 重复步骤2和步骤3,直到质心的位置不再改变或达到预定的迭代次数。

2.2. 代码实现

  1. 导入数据集,以鸢尾花(iris)数据集为例:
from sklearn.datasets import load_iris
import pandas as pd

# 加载数据集
iris = load_iris()

#查看数据集信息
print(iris.keys())
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])

#获取特征数据
data = iris["data"]

# 获取标签数据
target = iris["target"]
print(pd.Series(target).unique())
[0 1 2]


#查看分类名
print(iris["target_names"])
['setosa' 'versicolor' 'virginica']


#整合到数据框
import pandas as pd
df = pd.DataFrame(data= iris["data"],columns= iris["feature_names"])
print(df.head())
   sepal length (cm)  sepal width (cm)  petal length (cm)  petal width (cm)
0                5.1               3.5                1.4               0.2
1                4.9               3.0                1.4               0.2
2                4.7               3.2                1.3               0.2
3                4.6               3.1                1.5               0.2
4                5.0               3.6                1.4               0.2
  1. 确定初始化质点K的取值

肘部法则选择聚类数目:
该方法适用于K值相对较小的情况,随着聚类数目的增加,聚类误差(也称为SSE,Sum of Squared Errors)会逐渐减小。然而,当聚类数目达到一定阈值后,聚类误差的减小速度会变缓,形成一个类似手肘的曲线。这个手肘点对应的聚类数目就是肘部法则选择的合适聚类数目

from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
sse = []
# 设置聚类数目的范围
k_range = range(1, 10)
# 计算每个聚类数目对应的 SSE
for k in k_range:
    kmeans = KMeans(n_clusters=k,random_state = 42)
    kmeans.fit(df)
    sse.append(kmeans.inertia_)

# 绘制聚类数目与 SSE 之间的曲线图
plt.style.use("ggplot")
plt.plot(k_range, sse,"r-o")
plt.xlabel('Number of K')
plt.ylabel('SSE')
plt.title('Elbow Method')
plt.show()

在这里插入图片描述

从图中可看出,当K=3时,该曲线变得比较平缓,则该点为肘部点。即最佳的聚类数目为K=3

  1. 从sklean中调用k-Means算法模型
from sklearn.cluster import KMeans
kmeans = KMeans(n_clusters=3,max_iter= 400,random_state=42)
kmeans.fit(df)
print(kmeans.cluster_centers_)
y_kmeans = kmeans.labels_
df["y_kmeans"] = y_kmeans
  1. 可视化聚类结果

绘制平面图:

plt.scatter(df["sepal length (cm)"], df["sepal width (cm)"], c=df["y_kmeans"], cmap='viridis')
# 绘制聚类中心
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], c='red', marker='x', s=100)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('K-Means Clustering')
handles, labels = sc.legend_elements()
plt.legend(handles, labels)
plt.show()

在这里插入图片描述

绘制三维图:

# 创建3D图形对象
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
# 绘制散点图
sc = ax.scatter(df["sepal length (cm)"], df["sepal width (cm)"], df["petal length (cm)"], c=df["y_kmeans"], cmap='viridis')

# 绘制聚类中心
ax.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], kmeans.cluster_centers_[:, 2], c='red', marker='x', s=100)

ax.set_xlabel('Sepal Length')
ax.set_ylabel('Sepal Width')
ax.set_zlabel('Petal Length')
ax.set_title('K-Means Clustering')

# 添加图例
handles, labels = sc.legend_elements()
ax.legend(handles, labels)

plt.show()

在这里插入图片描述

2.3. 局限性

k-Means算法通过距离来度量样本之间的相似性,因此对于非凸形状的聚类算法可能无法正确地将样本划分到正确的聚类中。

k-Means算法对噪声和离群点敏感。这些异常值可能会影响到聚类结果,使得聚类变得不准确

需要事先指定聚类的数量k,而且对结果敏感。如果选择的聚类数量不合适,会导致聚类结果不准确或不理想。

比如这种情况:
在这里插入图片描述

三、层次聚类

3.1. 原理

层次聚类(Agglomerative clustering)算法是一种基于树状结构聚类方法,分为凝聚型和分裂型层次聚类

分裂型层次聚类从整个数据集作为一个簇开始,然后逐步将簇分裂为更小的簇,直到达到预定的簇的数量或达到某个停止准则。

凝聚型层次聚类将数据集中的样本逐步合并为越来越大的簇。
即从N个簇开始(每个样本为一个簇),在每个步骤中合并两个最相似的簇,直到达到某个停止准则。

如图所示,从上(下)往下(上):
在这里插入图片描述

优点是可以直观地展示数据点之间的相似性关系,并且不一定要预先指定聚类簇的数量。
层次聚类的缺点是计算复杂度较高,且对数据的噪声和异常值比较敏感。

3.2. 代码实现

参数 linkage: 用于指定链接算法
“ward” : 单链接,即两个簇的样本对之间距离的min
“complete”: 全链接,即两个簇的样本对之间距离的max
“average”: 均链接,即两个簇的样本对之间距离的mean

参数 affinity : 用于计算距离。
“euclidean”:使用欧几里德距离来计算数据点之间的距离(这是默认的距离度量方法)。
“manhattan”:使用曼哈顿距离来计算数据点之间的距离,它是两个点在所有维度上绝对值之和的总和。
“cosine”:使用余弦相似度来计算数据点之间的距离。

from sklearn.cluster import AgglomerativeClustering
cluster = AgglomerativeClustering()
print(cluster.fit_predict(df))

cluster = AgglomerativeClustering(n_clusters= 3 ,linkage= "complete",affinity="manhattan")
cluster.fit(df)
df["cluster"] = cluster.labels_
print(cluster.labels_)


# 创建3D图形对象
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')
plt.style.use("ggplot")

for i in range(len(df["cluster"])):
    if df["cluster"][i] == 0:
        ax.scatter(df["sepal length (cm)"][i], df["sepal width (cm)"][i], df["petal length (cm)"][i],c = "red")
    elif df["cluster"][i] ==1:
        ax.scatter(df["sepal length (cm)"][i], df["sepal width (cm)"][i], df["petal length (cm)"][i],c = "blue")
    else:
        ax.scatter(df["sepal length (cm)"][i], df["sepal width (cm)"][i], df["petal length (cm)"][i],c = "yellow")

ax.set_xlabel('Sepal Length')
ax.set_ylabel('Sepal Width')
ax.set_zlabel('Petal Length')
ax.set_title('Clustering')
plt.show()

在这里插入图片描述

四、DBSCAN算法

4.1. 原理

DBSCAN是一种基于密度的聚类算法,它能够发现任意形状的聚类簇,并且能够识别出噪声点,它将样本划分为核心点、边界点和噪声点。算法的步骤如下:

  1. 随机选择一个未访问的样本点。根据设置的距离半径(eps),称在这一范围的区域为该样本实例的邻域

  2. 如果该样本点的邻域内样本数大于设定的阈值(min_samples),则将其标记为核心点,并将其邻域内的样本点加入到同一个簇中。

  3. 如果该样本点的邻域内样本数小于设定的阈值,则将其标记为边界点。

  4. 重复以上步骤,直到所有样本点都被访问。

  5. 最后,任何不是核心点,且邻域中没有实例样本的样本点都将被标记为噪声点

4.2. 代码实现

from sklearn.cluster import DBSCAN
cluster = DBSCAN(eps= 0.6 , min_samples= 10)
cluster.fit(df)
df["cluster"] = cluster.labels_
print(df)

#-1代表噪声点
print(df["cluster"].value_counts())
 1    88
 0    49
-1    13
Name: cluster, dtype: int64


sc = plt.scatter(df["sepal length (cm)"],df["sepal width (cm)"],c = df["cluster"])
plt.title('DBSCAN Clustering')
handles, labels = sc.legend_elements()
plt.legend(handles, labels)
plt.show()

在这里插入图片描述

from sklearn.cluster import DBSCAN
from sklearn.datasets import make_moons

# 生成随机数据
X, y = make_moons(n_samples=200, noise=0.05) 
print(X)

dbscan = DBSCAN(eps=0.3, min_samples=5)
dbscan.fit(X)

# 获取聚类标签
labels = dbscan.labels_

#因为设置的noise很小,故没有噪声点
print(pd.Series(labels).value_counts())
0    100
1    100
dtype: int64


# 绘制聚类结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.title('DBSCAN Clustering')
handles, labels = sc.legend_elements()
plt.legend(handles, labels)
plt.show()

在这里插入图片描述

五、区别与相同点

1. 区别:

  1. K-means是一种划分聚类算法,它将数据集划分为固定数量的簇(一定要预先指定簇的数量),而层次聚类(不一定要指定簇的数量)和DBSCAN算法(需要指定邻域半径和最小样本数),它们可以自动确定簇的数量。

  2. K-means和层次聚类算法都假设簇具有相同的形状和大小,而DBSCAN算法可以发现任意形状和大小的簇。

  3. K-means和层次聚类算法都对异常值敏感,而DBSCAN算法对异常值不敏感。(可去掉噪声点)

2. 相同点:

K-means、层次聚类和DBSCAN算法都是无监督学习算法中的聚类算法,它们不依赖于标签信息。

这些算法都使用距离或相似性度量来度量样本之间的相似性或距离。


总结

本文从最开始的自己实现聚类到后面的三个机器学习聚类算法:( K-Means 、层次聚类、DBSCAN聚类)的学习,再到后面对这三个算法的比较与总结。加深了对聚类原理的了解。

我住长江头,君住长江尾;日日思君不见君

–2023-8-31 筑基篇


http://www.niftyadmin.cn/n/4992328.html

相关文章

SAP_ABAP_OLE_EXCEL批导案例

SAP ABAP顾问能力模型梳理_企业数字化建设者的博客-CSDN博客SAP Abap顾问能力模型https://blog.csdn.net/java_zhong1990/article/details/132469977 一、OLE_EXCEL批导 1.1 下载按钮 1.2 选择EXCEL上传,解析EXCLE数据, Call屏幕。 1.3 实现效果 1.4…

Axure RP美容美妆医美行业上门服务交互原型图模板源文件

Axure RP美容美妆医美行业上门服务交互原型图模板源文件,原型内容属于电商APP,区别于一般电商,它的内容是‘美容美发美妆等’上门服务等。大致流程是线上买单,线下实体店核销消费。 附上预览演示:axure9.com/mobile/73…

第P3周:天气识别

一、前期准备 1、设置GPU import torch import torch.nn as nn import torchvision.transforms as transforms import torchvision from torchvision import transforms, datasetsimport os,PIL,pathlibdevice torch.device("cuda" if torch.cuda.is_available() …

【electron】Puppeteer 和 Electron 共用同一个Chrome 或 Chromium浏览器二进制文件

将 Puppeteer 的可执行路径设置为 Electron 的可执行路径来实现这一点 以下是一个示例代码,展示了如何在 Puppeteer 中使用 Electron 的浏览器二进制文件: const puppeteer require(puppeteer-core);(async () > {// 设置 Electron 的可执行路径co…

一米ip流量池系统

PC端快速切换移动网络IP 支持全网通sim卡槽,国内三大运营商IP池动态切换,实现真实移动端IP切换。从此换IP再也不用vpn或代理,一个设备搞定 1.兼容国内电信,移动,联通三网通的sim卡4G连接,快速稳定2.可直接…

从RESP的角度理解事务和管道

1. RESP 是什么? 16 进制 0d 0a 就是 \r\n。 RESP 就是 Redis 服务端和客户端之间进行通信的协议,它是建立在 TCP 之上的一种简单的应用层协议。你可以把它理解成 HTTP 协议,不过它更加的简单。 它支持很多数据类型,这里列举几…

Rust 学习笔记(持续更新中…)

一、 编译和运行是单独的两步 运行 Rust 程序之前必须先编译,命令为:rustc 源文件名 - rustc main.rs编译成功之后,会生成一个二进制文件 - 在 Windows 上还会生产一个 .pdb 文件 ,里面包含调试信息Rust 是 ahead-of-time 编译的…

科技驱动产业升级:浅谈制造型企业对MES系统的应用

在科技不断进步的背景下,制造型行业也在持续发展,但随之而来的挑战也不断增加。传统的管理方式已经无法满足企业的需求,因此许多制造型企业开始寻找新的管理模式。制造执行系统(MES)作为先进的制造信息技术之一&#x…