【K-means聚类算法】实现鸢尾花聚类

news/2024/5/20 10:15:50 标签: 算法, kmeans, 聚类, 人工智能, 机器学习

文章目录

  • 前言
  • 一、数据集介绍
  • 二、使用步骤
    • 1.导包
    • 1.2加载数据集
    • 1.3绘制二维数据分布图
    • 1.4实例化K-means类,并且定义训练函数
    • 1.5训练
    • 1.6可视化展示
    • 2.聚类算法
    • 2.1.可视化生成
    • 3其他聚类算法进行鸢尾花分类


前言

例如:随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。


一、数据集介绍

鸢尾花数据集:鸢尾花开源数据集,共包含150条记录

二、使用步骤

1.导包

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans 
from sklearn import datasets 

1.2加载数据集

# 直接从sklearn中获取数据集
iris = datasets.load_iris()
X = iris.data[:, :4]    # 表示我们取特征空间中的4个维度
print(X.shape)

1.3绘制二维数据分布图

# 取前两个维度(萼片长度、萼片宽度),绘制数据分布图
plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='see')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show() 
# 取后两个维度(花瓣长度、花瓣宽度),绘制数据分布图
plt.scatter(X[:, 2], X[:, 3], c="green", marker='+', label='see')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() 

在这里插入图片描述
在这里插入图片描述

1.4实例化K-means类,并且定义训练函数

def Model(n_clusters):
    estimator = KMeans(n_clusters=n_clusters)# 构造聚类
    return estimator

def train(estimator):
    estimator.fit(X)  # 聚类

1.5训练

# 初始化实例,并开启训练拟合
estimator=Model(4)     
train(estimator)     

1.6可视化展示

label_pred = estimator.labels_  # 获取聚类标签
# 绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0')
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1')
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2')
plt.xlabel('sepal length')
plt.ylabel('sepal width')
plt.legend(loc=2)
plt.show() 

# 绘制k-means结果
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
plt.scatter(x0[:, 2], x0[:, 3], c="red", marker='o', label='label0')
plt.scatter(x1[:, 2], x1[:, 3], c="green", marker='*', label='label1')
plt.scatter(x2[:, 2], x2[:, 3], c="blue", marker='+', label='label2')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() 

'''# 绘制k-means结果,分成4类,效果并不比3类好。
x0 = X[label_pred == 0]
x1 = X[label_pred == 1]
x2 = X[label_pred == 2]
x3 = X[label_pred == 3]
plt.scatter(x0[:, 2], x0[:, 3], c="red", marker='o', label='label0')
plt.scatter(x1[:, 2], x1[:, 3], c="green", marker='*', label='label1')
plt.scatter(x2[:, 2], x2[:, 3], c="blue", marker='+', label='label2')
plt.scatter(x2[:, 2], x2[:, 3], c="yellow", marker='X', label='label3')
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.legend(loc=2)
plt.show() '''

在这里插入图片描述

2.聚类算法

代码如下(示例):

#1. 函数distEclud()的作用:用于计算两个向量的距离

def distEclud(x,y):
    return np.sqrt(np.sum((x-y)**2)) 
 
#2. 函数randCent()的作用: 用来为给定的数据集构建一个包含k个随机质心的集合
def randCent(dataSet,k):

    # 3.m,n分别被赋值为?
    #   m = 150  ,n = 4
    m,n = dataSet.shape 
    centroids = np.zeros((k,n))

    #4.补充range()中的参数
    for i in range(k): 

        index = int(np.random.uniform(0,m)) # 产生0到150的随机数(在数据集中随机挑一个向量做为质心的初值)
        centroids[i,:] = dataSet[index,:] #把对应行的四个维度传给质心的集合
    # print(centroids)    
    return centroids
    
 
# k均值聚类算法
def KMeans(dataSet,k): 
    m = np.shape(dataSet)[0]  #行数150
    # 第一列存每个样本属于哪一簇(四个簇)
    # 第二列存每个样本的到簇的中心点的误差
    # print(m)
    clusterAssment = np.mat(np.zeros((m,2)))# .mat()创建150*2的矩阵
    clusterChange = True

    # 5.centroids = randCent(dataSet,k)的作用:初始化质心centroids
    centroids = randCent(dataSet,k)

    # 6.补充while循环的条件。
    while clusterChange:

        
        clusterChange = False
        # 遍历所有的样本

        # 7.补充range()中的参数。
        for i in range(m):

            minDist = 100000.0
            minIndex = -1
            # 遍历所有的质心

            #8.补充range()中的参数:
            for j in range(k):

                # 计算该样本到3个质心的欧式距离,找到距离最近的那个质心minIndex
                distance = distEclud(centroids[j,:],dataSet[i,:])
                if distance < minDist:

                    #9.补充minDist;minIndex的赋值代码
                    minDist = distance
                    #分类的索引
                    minIndex = j

            # 更新该行样本所属的簇
            if clusterAssment[i,0] != minIndex:
                clusterChange = True
                clusterAssment[i,:] = minIndex,minDist**2
        #更新质心
        for j in range(k):
   
            pointsInCluster = dataSet[np.nonzero(clusterAssment[:,0].A == j)[0]]  # 获取对应簇类所有的点(x*4)
            #10.补充axis后的赋值:
            centroids[j,:] = np.mean(pointsInCluster,axis=0)   # 求均值,产生新的质心
           
    # print(clusterAssment[0:150,:])
    print("cluster complete")
    return centroids,clusterAssment

def draw(data,center,assment):
    length=len(center)
    fig=plt.figure
    data1=data[np.nonzero(assment[:,0].A == 0)[0]]
    data2=data[np.nonzero(assment[:,0].A == 1)[0]]
    data3=data[np.nonzero(assment[:,0].A == 2)[0]]
    # 选取前两个维度绘制原始数据的散点图
    plt.scatter(data1[:,0],data1[:,1],c="red",marker='o',label='label0')
    plt.scatter(data2[:,0],data2[:,1],c="green", marker='*', label='label1')
    plt.scatter(data3[:,0],data3[:,1],c="blue", marker='+', label='label2')
    # 绘制簇的质心点
    for i in range(length):
        plt.annotate('center',xy=(center[i,0],center[i,1]),xytext=\
        (center[i,0]+1,center[i,1]+1),arrowprops=dict(facecolor='yellow'))
        #  plt.annotate('center',xy=(center[i,0],center[i,1]),xytext=\
        # (center[i,0]+1,center[i,1]+1),arrowprops=dict(facecolor='red'))
    plt.show()
    # 选取后两个维度绘制原始数据的散点图
    plt.scatter(data1[:,2],data1[:,3],c="red",marker='o',label='label0')
    plt.scatter(data2[:,2],data2[:,3],c="green", marker='*', label='label1')
    plt.scatter(data3[:,2],data3[:,3],c="blue", marker='+', label='label2')
    # 绘制簇的质心点
    for i in range(length):
        plt.annotate('center',xy=(center[i,2],center[i,3]),xytext=\
        (center[i,2]+1,center[i,3]+1),arrowprops=dict(facecolor='yellow'))
    plt.show()

2.1.可视化生成

代码如下(示例):

import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets 
iris = datasets.load_iris()
dataSet= iris.data[:, :4]  
k = 3
centroids,clusterAssment = KMeans(dataSet,k)
draw(dataSet,centroids,clusterAssment)

在这里插入图片描述
在这里插入图片描述

3其他聚类算法进行鸢尾花分类

import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import KMeans 
from sklearn import datasets 
# 直接从sklearn中获取数据集
iris = datasets.load_iris()
X = iris.data[:, :4]    # 表示我们取特征空间中的4个维度
print(X.shape)
from sklearn.cluster import DBSCAN
# 导入数据集
iris = datasets.load_iris()
X = iris.data[:, :4]  # 取前四个特征
# 使用DBSCAN聚类算法
dbscan = DBSCAN(eps=0.5, min_samples=5)
labels = dbscan.fit_predict(X)
# 绘制分类结果
plt.scatter(X[:, 0], X[:, 1], c=labels)
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('DBSCAN Clustering')
plt.show()

在这里插入图片描述

from sklearn.cluster import AgglomerativeClustering
# 使用层次聚类算法
hierarchical = AgglomerativeClustering(n_clusters=3)
labels = hierarchical.fit_predict(X)
# 绘制分类结果
plt.scatter(X[:, 0], X[:, 1], c=labels, marker='+')
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.title('Hierarchical Clustering')
plt.show()

在这里插入图片描述


http://www.niftyadmin.cn/n/5163778.html

相关文章

高教社杯数模竞赛特辑论文篇-2023年C题:商超蔬菜销售数据的统计分析及建模(附获奖论文及R语言和LINGO代码实现)(续)

目录 4.4.1 多变量时间序列 VAR 模型的建立 4.5 优化模型求解成本利润率完成定价策略 4.5.1 模型建立

基于springboot的二次元商品销售网站的设计与开发

大家好我是玥沐春风&#xff0c;今天分享一个基于springboot的二次元商品销售网站的设计与开发&#xff0c;项目源码以及部署相关请联系我&#xff0c;文末附上联系信息 。 开发工具及技术 2.3.1 Spring Boot框架 SpringBoot是一个全新的开源的轻量级框架。简化了Spring应用的…

【Linux】 awk命令使用

AWK 是一种处理文本文件的语言&#xff0c;是一个强大的文本分析工具。 之所以叫 AWK 是因为其取了三位创始人 Alfred Aho&#xff0c;Peter Weinberger, 和 Brian Kernighan 的 Family Name 的首字符。 语法 awk [选项] [文件] awk [选项] [程序] [文件] awk命令 -Linux手…

11.8代码

利用gpiod子系统实现开发板六盏灯&#xff0c;安装驱动点亮&#xff0c;卸载驱动熄灭 #include <linux/init.h> #include <linux/module.h> #include <linux/of.h> #include <linux/gpio/consumer.h> /*myleds{core-leds{leds <&gpioz 5 0>…

PHP分类信息网站源码系统 电脑+手机+微信端三合一 带完整前后端部署教程

大家好啊&#xff01;今天源码小编来给大家分享一款PHP分类信息网站类源码系统。这款源码系统是一套专业的信息发布类网站综合管理系统&#xff0c;适合各类地方信息和行业分类站点建站。随着这几年我们国家网民爆炸式的增 长&#xff0c;网络信息也随之越来越庞大&#xff0c;…

数据的读取和保存-MATLAB

1 序言 在进行数据处理时&#xff0c;经常需要写代码对保存在文件中的数据进行读取→处理→保存的操作&#xff0c;流程图如下&#xff1a; 笔者每次在进行上述操作时&#xff0c;都需要百度如何“选中目标文件”以及如何“将处理好的数据保存到目标文件中”&#xff0c;对这一…

【测试工具】UnixBench 测试

一、UnixBench 简介 UnixBench 原本叫做 BYTE UNIX benchmark suite。软件为 Unix 类的系统提供了一些基本的性能指标。通过不同的测试来测试系统不同方面的性能&#xff08;2D&#xff0c;3D&#xff0c;CPU&#xff0c;内存等等&#xff09;。这些测试的结果将和一些标准的系…

申克SCHENCK动平衡机显示器维修CAB700系统控制面板

适用电枢转子的卧式平衡机&#xff0c;高测量率&#xff0c;自动测量循环&#xff0c;自动定标完整的切槽计数可选项&#xff0c;CAB700动平衡测量系统两种皮带驱动方式(上置式或下置式)适用于站立或坐姿操作的人性化工作台设计。 动平衡机申克控制器面板维修型号&#xff1a;V…